
Final Presentation
Assurance Recipes
Application
Group Number: sdmay20-26
Team website: https://sdmay20-26.sd.ece.iastate.edu/
Client and Advisor: Myra Cohen
By: Matthew Smith, Kevan Patel, Qiwei Li, Shiwei Wang, and Garrett Harkness

https://sdmay20-26.sd.ece.iastate.edu/

Acknowledgements

● Myra Cohen - Our client and advisor
● Justin Firestone - Myra’s grad student and helper of creating accurate

Assurance Recipes Application
● Mark Hernandez - The original programmer of the Assurance Recipes

prototype application

Motivation

● We are recreating an app previously made by a
student named Mark Hernandez.

● The application will be used by synthetic biology
students to participate in a large competition called
iGEM.

● It will also be used by professional synthetic
biologists.

What is Synthetic Biology?

● Synthetic biology involves redesigning
organisms for useful purposes by engineering
them to have new abilities.

● For example E. Coli.
● Many aspects of synthetic biology is also

similar to how software is created.

E. Coli (Above Figure)

The Assurance Recipes Application

Using a notation called Goal Structuring
Notation (GSN) which was chosen by our client,
Assurance Recipes and Cases are a concept in
synthetic biology to allow people who use
genetically modified organisms to feel
confident that what they are testing and using
is safe. Our application will help allow students
and researchers to create and outline diagrams
in a fully implemented design.

Objective and Problem Statement

● The original website was coded by Mark
Hernandez - Meant to be temporary.

● Uses an unsafe database that isn’t owned
by our client.

● Was used and meant to be a prototype used
on for the iGEM competition.

● Hosted on website that needs to be moved.
● We want to recreate and redo the webapp

so that it can be released to the community.

Goal Structuring Notation (GSN) and Assurance Cases

The Goal Structuring Notation – A Safety Argument Notation by Tim Kelly and Rob Weaver of the University of York

● Set of arguments and corresponding bodies
that provide evidence to these arguments.

● Applicable across many different industries.
● Complex systems lead to complex assurance

cases.
● Drawbacks:

○ Can become too complicated to users who lack
expertise.

○ Can have too many degrees of freedom.

International Genetically Engineered Machine (iGEM)
Competition

● All projects are open source.

● Safety of projects must be explicitly discussed.

● Gold Medals require teams to accomplish

Integrated Human Practices

○ Asks teams to “consider whether their projects are safe,

responsible, and good for the world.”

Assurance Case Example from https://www.cs.york.ac.uk/assure2013/ASSURE2013Slides/0ASSURE_SC_Intro_Final.pptx.pdf

Assurance Recipes

● Abstraction of assurance cases.
● Template-Like Model
● Provide user with structure/pattern for assurance case, user selects

ingredients.
● Customized for domain, then parameterized for easy user instantiation.
● Containment Recipe
● Safety Mechanism Recipe

Past Literature

● The Assurance Recipe: Facilitating Assurance Patterns
○ Myra Cohen, Justin Firestone

● The Goal Structuring Notation – A Safety Argument Notation
○ Tim Kelly, Rob Weaver

App

View

Model

React

A JavaScript library for
building user interfaces

React can apply MVP
model for UI development
by using React Context
API

Electron
- Context menus
- Tabbar menus
- Drag and drop
- Local notification
- Directly modify local files

The Electron framework
lets you write
cross-platform desktop
applications using
JavaScript, HTML and
CSS. It is based on
Node.js and Chromium
and is used by the Atom
editor and many other
apps.

Our client asked us
● Both Web App and local App
● One single code base
● Works on every platform

Electron is the best option!

Prototype Browser version and Electron version

Using Electron builder to generate app

All platforms: 7z, zip, tar.xz, tar.lz, tar.gz, tar.bz2, dir (unpacked directory).

● macOS: dmg, pkg, mas, mas-dev.
● Linux: AppImage, snap, debian package (deb), rpm, freebsd, pacman, p5p, apk.
● Windows: nsis (Installer), nsis-web (Web installer), portable (portable app without installation),

AppX (Windows Store), Squirrel.Windows.

https://www.electron.build/configuration/mac#MacConfiguration-target
https://www.electron.build/configuration/linux#LinuxConfiguration-target
http://appimage.org/
http://snapcraft.io/
https://www.electron.build/configuration/win#WindowsConfiguration-target

Others
- Code Gen (Documentation)
- Knova JS
- Selenium (Testing)
- React Testing Library (Testing)
- JSON Schema Generator (Form)

https://docs.google.com/file/d/1Dkrpe7w5G--ud-GmB7Axhckd2uFkoalM/preview

Docker

Debug your app, not your environment

Securely build, share and run any
application, anywhere

Dockerfile we used for this project

Functional requirements

● Creation and editing of safety case diagrams.

● Creating safety cases based on a template.

● Free text editing on the diagrams.

● Importing and exporting of safety cases on local machine.

● Opening an existing safety case.

Non-functional Requirements

Performance: Running the
application in a short
response time.

Scalability: Users being
able to add assurance
cases.

Reliability: Safe stable
software

Availability: An app that is
available for those who
need to use it.

Usability: Easy to use and
understandable interface
for users not well versed in
a technical background.

Security: Saving and
creating in a secure
environment. No sensitive
information being leaked.

Test Plan

● Interface Specifications
● Functional Testing

○ Testing models
○ Testing UI

● Non-Functional Testing
○ Performance
○ Security
○ Usability
○ Compatibility

Testing Interface

Risks and Costs

● Store user’s data

● No costs for any hardware and other sources

● Working remotely and Pandemic

Project Milestones & Schedule & Planning

2019

Basic Template Setup

Choice libraries. Setup project
template

Implement basic
application

Implemented basic functions.
Added unit tests

2019

Basic Function

Finished the basic functions’
implementation. Add more tests.

2020

Final Product

Cleaning up final project for a
presentable final application

2020

Functional Decomposition

User:
-Export Template
-Create Graph
-Add Node
-Delete Node
-Add description
-Delete description
Admin:
-Delete template
Both:
-Upload template

User:
-Export Template
-Create Graph
-Add Node
-Delete Node
-Add description
-Delete description
Admin:
-Delete template
-Upload template

Prototype
Implementations

Old Implementation
New Implementation

Detailed Design

Engineering Standards and Design Practices

Task responsibility

For Group working:
● Weekly status report
● Lightning talk
● Design document
● Weekly meeting with client
● Weekly group meeting

Matt: Meeting Facilitator

Garrett: Scribe/Test Engineer

Kevan: Report Manager

Qiwei: Chief Engineer

Shiwei: Test Engineer

Thank you!

